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Abstract: The Functional Electrical Stimulator design using monophasic spike-exponential 

waveform was proposed and described in this study. The monophasic square waveform has 

benefit in generating an action potential, but it could cause side effects such as toxic caused 

by the electrode polarization. The square waveform signal which the frequency and pulse 

width could be modulated was manipulated to be the monophasic spike-exponential 

waveform. Transformer OT240 was applied at the end of the FES system part and 

functioned as a voltage amplifier and DC signal isolator. On every frequency range 

between 5–100 Hz, the 16 peak voltage stages with the lower limit of 45 Volt and an upper 

limit of 400 Volt was arranged to obtain VRMS value in each stage. Characterization result 

shows that the produced waveform was monophasic spike-exponential with the narrow 

pulse width (t1/2 = 7 µs) and VRMS in the maximum frequency and peak voltage was 

8.99 Volt. This study showed that the designed FES had high VP and low VRMS, thus, it 

could be concluded that this FES system design could be a candidate for its application. 
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1 Introduction1 

UNCTIONAL Electrical Stimulation (FES), 

compared to conventional therapy, is a technology 

that potentially providing more efficient, cost-effective 

therapy, enabling more frequent practice of movement 

and increased motivation [1]. It works based on 

artificial muscular contraction induced by a train of 

electrical stimuli [2, 3]. It applies low-stage electrical 
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current in few milli-amperes either to the nerves control 

that muscles nerves or directly over the motor end-

plate [4]. This electrical stimulation facilitates the 

reorganization of neuromuscular activity [5] and 

augments the neuronal excitability of sensory motor 

cortex [6, 7], also recover motor function [8-9]. It is 

shown as one of the most effective therapeutic 

modalities for improving voluntary movement in many 

kinds of disease supported by clinical studies such as 

stroke [10–12]; ankle foot injury [13]; hemiplegia [14]; 

denervated human muscle [15]; and hypertonicity [16]. 

On the other hand, the outcome of FES-based 

rehabilitation still involves some manual assistance by a 

physiotherapist to perform functional task concurrently 

with the application of electrical stimulation [17, 18]. 

   The intensity stimulation of FES is delivered as the 

waveform of electrical current pulses, which are defined 

as a function of the total charge transferred to the 

muscle which depends on pulse duration, amplitude, 

and frequency [19, 20]. Pulse duration is also known as 

pulse width or the stimulus time per cycle, while the 

current amplitude is the peak current value in the phase 

delivered by each pulse, both produce the amount of 

ionic flow to trigger action potentials that control the 
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strength of muscle contraction[21, 22]. Stimulation 

frequency is also called the pulse rate, another important 

feature of electrical stimulation, controls the type of 

muscle contraction and the amount of produced [23]. 

Some numbers have shown the different application of 

each pulse parameter on clinical assessment [24-26]. 

Thus, three kinds of waveform parameter are together 

combined and need to be set to determine the success of 

therapy [27]. 

   Due to the better action potential generation, 

monophasic is better than others [28]. Monophasic 

square is the most common waveform that has been 

already applied clinically and gives a satisfying result in 

any kinds of FES therapy [29-31]. However, 

monophasic square has some side effects, such as 

electrode corrosion that can be toxic [28], skin burns, 

muscle fatigue, and tissue damage during its 

polarization [32, 33] and those are caused by the high 

root mean square voltage (VRMS). In square waveform, 

the value of peak voltage (VP) is similar to VRMS. 

Therefore, the square waveform is undesirable because 

the severity of its side effects will be higher when the 

VP is higher. Whereas the high VP is needed due to the 

successful therapy. Thus, stimulated signal modulation 

is needed to obtain the optimum intensity and pulse 

parameter setting, while at the same time, preventing its 

side effects [33-36]. 

   In this study, we present the design of monophasic 

spike-exponential waveform FES which has a relatively 

narrow pulse width. The advantage of the monophasic 

spike-exponential waveform is having less VRMS than 

VP, resulting in smaller root mean square current 

(iRMS). In order to control the big peak voltage of the 

monophasic spike-exponential waveform, pulse-width 

modulation is applied by using an occupied 

microcontroller. Direct current (DC) signal block is 

used to ensure that there is no polarization around the 

electrode. 

 

2 Methods 

2.1 Block Diagram 

   In this system, the generation of the monophasic 

spike-exponential waveform is begun within the 

generation of square wave signal which is pulse width 

and frequency can be controlled by pin 9 on Arduino 

UNO. Schmitt trigger is applied to ensure that the 

square wave signal is perfectly generated. In order to 

obtain the signal that can control the voltage amplifier 

circuit in form of the controllable transformer by the 

power transistor, the output of the Schmitt trigger is 

connected to the current amplifier. Besides the voltage 

amplifier, the transformer can be functioned as DC 

signal isolator. The transformer’s output will be 

controlled by the voltage controller. Voltage controller 

consists of a voltage divider circuit in which each output 

voltage connected to the relay driver and multiplexer 

circuit control which one of driver relay is active. 

Arduino UNO controls the voltage stage which 

increases every two seconds by pin 10. Once the voltage 

stimulus matched with the therapeutic needs, press the 

push button that connected to pin A0 to lock then start 

the therapy process. The block diagram system of FES 

is shown in Fig. 1. 

 

2.2 Instrumental Design 

   The square pulse width is controlled in order to obtain 

the desired amplitude of the monophasic spike-

exponential waveform. In this design, the desired 

amplitude is 400 Volt generated by controlling the pulse 

width, so that each frequency has a different square 

pulse width. 

   Based on the electrical circuit we used in this study, in 

order to generate the narrow pulse width of the 

monophasic spike-exponential waveform, notably, the 

perfect square exponential is needed. Schmitt trigger is 

applied to ensure that the perfect square waveform 

signal was generated. In this design, the NAND logic 

gate is applied together with the Schmitt trigger. Thus, 

the applied combination of these two components gives 

simplicity than using the others, where other 

components are still needed. The circuit schematic of 

FES which can generate monophasic spike-exponential 

waveform is shown in Fig. 2. 

   In order to get the generated small current from 

NAND and Schmitt trigger, a 47KΩ resistor is used, 

resulting in guaranteed endurance and stability. On the 

other hand, it can be done because Darlington of the 

current amplifier transistor arrangement doesn’t need 

bigger current on transistor’s base, thus the Darlington 

circuit in this system can be also called as a current 

amplifier. The OT240 voltage amplifier will be 

controlled by two NPN transistors in the Darlington 

circuit. In order to amplify the voltage, the transformer 

OT240 will be functioned as a step-up transformer. The  

 

 
Fig. 1 The block diagram system of FES. 
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(a) 

 
(b) 

Fig. 2 a) Circuit schematic of FES that generates a monophasic spike-exponential waveform, and b) Relay driver circuit of FES. 

 

OT240 transformer is functioned as both voltage 

amplifier circuit and DC signal isolator. Researchers 

have shown that isolating DC signal can help to prevent 

body polarization, thus the safety can be 

guaranteed [28, 37]. Sixteen resistors are installed 

serially on the OT240 transformer output which is 

functioned as a voltage divider, where each output 

voltage is connected to the relay. The relay driver circuit 

is shown in Fig 3. The multiplexer is used to control 

relay driver, thus, it can be determined which one the 

active relay is. 3-bit of IC CD4051 multiplexer is used 

and it controls the 8 different sequences. 4-bit 

multiplexer can be obtained by combining two IC 

CD4051 multiplexer and controlling the voltage stage 

(high and low) on pin INH, A, B, and C, resulting in the 

production of 16 sequences. The truth table of 4-bit 

multiplexer by combining two IC CD4051 is shown as 

Table 1. 

 

2.3 Data Retrieving 

   All signal parameters are measured using an 

oscilloscope (Atten ® Instruments AT 7340 40MHz), 

including signal form, amplitude (VP), frequency (f), 

and half-life (t1/2). The same oscilloscope is also used  

 
Table 1 Truth table of 4-bit multiplexer by combining two IC 

CD4051. 

Input States 
“ON” Channel (s) 

Voltage 

Stage INH A B C 

0 0 0 0 Ch10 0 

0 0 0 1 Ch11 1 

0 0 1 0 Ch12 2 

0 0 1 1 Ch13 3 

0 1 0 0 Ch14 4 

0 1 0 1 Ch15 5 

0 1 1 0 Ch16 6 

0 1 1 1 Ch17 7 

1 0 0 0 Ch20 8 

1 0 0 1 Ch21 9 

1 0 1 0 Ch22 10 

1 0 1 1 Ch23 11 

1 1 0 0 Ch24 12 

1 1 0 1 Ch25 13 

1 1 1 0 Ch26 14 

1 1 1 1 Ch27 15 

Note: Ch10–Ch17 are output channel in the IC CD4051 (1) 

and Ch20 – Ch27 are output channel in the IC CD4051 (2). 
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to measure the output voltage stability. The stability test 

is done by using 15 kΩ of the resistor which is applied 

in the electrode. 

 

2.4 Body Resistance Measurement 

   The measurement of body resistance was performed 

on 5 volunteers at acupuncture meridian and non-

acupuncture point with a distance of 5 cm and 10 cm. 

there were 5 replications of this measurement. The 

measurement at acupuncture meridian was at urinary 

bladder meridian. Fig. 3 showed the reference point at 

acupuncture meridian and non-acupuncture point. The 

yellow circle at Fig. 3 was the reference point for body 

resistance measurement. At acupuncture meridian, the 

reference point was BL48 and at non-acupuncture point, 

the reference point was on the right of acupuncture 

point with a distance of 5 cm. 

 

3 Results and Discussion 

   This FES system design begins with the signal square 

which is generated by controlling Arduino UNO’s 

timer/counter port, so both pulse width and frequency 

can be desirably controlled. In order to achieve this 

system requirement, the square waveform signal 

modulation is applied and called as PWM, so this design 

does not need the DAC circuit. Generating 400 Volt 

monophasic spike-exponential waveform VP can be 

achieved by controlling PWM on each frequency. On 

the other hand, every voltage controller on each 

frequency is given the same value VP. The PWM value 

on each frequency is shown in Fig. 4. 

   The FES system design is conditionally staged, it can 

start from lower to higher voltage stage, so the  

 

 

 

 

 

A reference point for 

measurements of the non-

acupuncture point 

A reference point for 

measurements of the 

acupuncture meridian points 

 
Fig. 3 The reference point position for body resistance 

measurement. 

stimulation voltage can be adjusted according to the 

needs of patients. Thus, the patient who is under 

electrical stimulation can feel the comfort with no pain. 

Voltage controller of this FES is controlled by the 4-bit 

multiplexer, so the 16 voltage stages with the lower 

limit of VP(1) = 45 Volt and an upper limit of VP(16) = 

400 Volt are obtained. Fig. 5 shows the increasing 

voltage on each stage. The stimulation voltage is 

expected to be approximately 200 Volt, so between 

VP(6) = 197 to VP(11) = 224 Volt, the voltage 

increasing needs to be smoothed. Overall, the 

adjustment of the voltage increasing on every stage is 

required because there are only 16 stages in this FES 

system design. In order to determine every VRMS stage 

on each frequency, the FES voltage output is arranged. 

Thus, it can be predicted how much FES iRMS is used. 

   Fig. 6 shows the waveforms produced by FES. Based 

on this image, it can be proven that the system design 

has succeeded in producing a monophasic spike-

exponential waveform. These waves are more desirable  

 

 
Fig. 4 The graph of required PWM value at each frequency to 

achieve VP = 400 Volt. 

 

 
Fig. 5 Stage of voltage increment for each amplitude (VP). 
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as output from FES due to higher VP and lower VRMS 

production. The reason behind this can be explained 

through the physical concept of electric waves. 

Basically, electrical stimulation therapy is giving 

stimulation from the electrical current train from the 

stimulator to the patient’s body [2, 3]. During the 

electrical stimulation, iRMS is proportional to its 

VRMS and inversely proportional to the resistance or 

impedance of the human body [38]. In order to increase 

the therapy effectiveness, high voltage stimulation (in 

the meaning of its potential differences) is required. 

Besides, to fulfill the medical safety standard, the value 

of iRMS must be less than 5 mA [39]. 

   In order to fulfill the therapy requirements, the 

monophasic spike-exponential waveform is chosen as 

the output signal, due to its high VP and at the same 

time, low iRMS. In other words, the VP of the 

monophasic spike-exponential waveform is higher than 

VRMS. The mathematical equation of monophasic 

spike-exponential waveform voltage between t = 0 until 

t = T is described as 
 

( ) t

E PV t V e    (1) 
 

where 𝜆 is a constant that represents the voltage 

exponential decreasing. The magnitude of exponential 

root means square voltage signal can be described as: 
 

  
2

2 0
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RMS T

V t dt
V

dt




  (2) 

 

 

 
(c) 

Fig. 6 The generated monophasic spike-exponential waveform 

of designed FES as shown using 5 Volt/div, X10 probe with 

a) 2 ms/div, and b) 10 µs/div. c) The illustration of 

monophasic spike-exponential waveform unit characteristics. 
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   Completely, the unit characteristic of monophasic 

spike-exponential were illustrated in Fig. 6(c). An 

important quantity on exponential function is half-

life (t1/2). Half-life can be described as the begin 

time (t = 0) until the reached time that the voltage value 

becomes a half from the beginning voltage. The relation 

between 𝜆 and t1/2 can be described as: 
 

1/2

2

tP

P

V
V e


   (6) 

1/ 2

0.693

t
    (7) 

 

Substituting 𝜆 on (7) to the (5), Eq. (8) can be obtained 
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    (8) 

 

T >> t1/2 cause VRMS becomes 
 

1/2

1.177

P

RMS

tV
V

T
   (9) 

 

   Equation (9) is substantial in the study about FES 

using monophasic spike-exponential waveform because 

it clearly represents how VRMS corresponds. The stage 

arrangements of the stimulation voltages give advantage 

on knowing VRMS on each stage so that iRMS can be 

obtained when the impedance value of the patient’s 

body [40] between two electrodes is known. In this 

study, the impedance on the body surface between the 

two electrodes is assumed to be 15–20 kΩ [41]. Based 

on the characteristic result showed in Figure 6, the t1/2 of 

FES on the frequency of 5-100 Hz is 7 µs. On the other 

hand, at the highest frequency of 100 Hz and the 

maximum VP of 400 Volt, the VRMS is obtained as 

8.99 Volt. The FES output current of around 0.6 mA is 

still far below the human pain threshold, which is 

5 mA [39], thus the FES designed in this study can be 

classified as safe, not harmful, and comply the medical 

regulations. The monophasic spike-exponential 

waveform has a very narrow pulse width, so it can 

reduce the risk of muscle fatigue [42-44]. Every stage of 

VRMS on each frequency is shown in Fig. 7. 

   In clinical practice, therapy using FES [45, 46] is done 

by applying two electrodes on the patient’s 

body [47, 48]. The FES flows electrical current from the 

positively charged electrode to the negatively charged 

electrode. Thus, potential differences (V) are induced 

between two FES electrodes and therefore increasing 
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the potential energy (Ep) of charged particle (q) on the 

patient’s body. It has been well-known that there are 

many kinds of ions in the human body [38] that has the 

electrical function as the electrically charged particle 

and has a certain mass (m) which is always moved [38]. 

The increasing electrical potential energy on the particle 

has a speed increasing potency (u) of electrically 

charged particle’s movement. Due to the constant 

particle charge and mass, the change of particle 

movement speed is proportioned with the given 

potential roots square difference. 

   The mechanism of the speed increase of charged 

particle movement speed can be explained using 

electrical force concept. Potential differences between 

two points separated by a distance (d) causing electrical 

field generation (E = V⁄d). Charged particle q which is 

in influenced electrical field E, has the electric force by 

the amount of F = qE. Electric force gives particle 

movement acceleration effect (a = F⁄m), thus particle 

movement acceleration is proportional to the electric 

potential differences that are given and inversely 

proportional to the differences between the two applied 

electrodes. 

 

 
Fig. 7 Every stage of VRMS on each frequency. 

 

 
Fig. 8 The stability testing of the designed FES voltage output 

on each frequency. 

   Due to the testing on each frequency, which is done 

by 1-minute measurement for 30 minutes, the created 

FES system design has good voltage stability which 

were shown in Fig. 8 Every minute measurement which 

is done by applying 15KΩ assessment shows that the 

FES peak voltage is stable due to the 400 Volt peak 

voltage. The FES system design with this monophasic 

spike-exponential waveform output is already able to 

show VRMS at each frequency and stage. This FES 

system design needs to be improved by adding a system 

of the body’s impedance measurement between two 

electrodes, so the iRMS that flow directly to the body 

can be determined. As a result, the appropriate 

therapeutic dose can be obtained. 

   The measurement of body resistance was performed at 

acupuncture meridian and non-acupuncture point based 

on Fig. 3 with a distance of 5 cm and 10 cm. the result 

of this measurement was shown in Fig. 9. Fig. 9 showed 

that the distance between two linear electrodes was 

correlated to the body resistance. The further the  

 

 
(a) 

 
(b) 

Fig. 9 The body resistance of 5 volunteers (A, B, C, D, and E) 

at acupuncture meridian and non-acupuncture point with a 

distance of 5 cm and 10 cm. 
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distance, the bigger the resistance. Besides that, the 

resistance value at the acupuncture meridian was lower 

than the non-acupuncture point. 

   The use of FES for stimulating the nervous stem 

through tripolar cuff electrodes could cause delay in 

muscle fatigue. Thus, the design of hyperpolarization 

pulse with ramp structure at the pulse termination could 

prevent the Anode-Break Excitation (ABE) 

phenomenon. ABE is an electrophysiological 

phenomenon in which the neurons fire the action 

potential as a response towards hyperpolarization 

current termination. So, FES with Monophasic Spike-

Exponential waveform would be beneficial if it is used 

to stimulate the nervous stem directly. Because of that, 

the stimulator output impedance, heart rate amplitude 

resolution, and the resistance used as the load could be 

suitable with that waveform. Muscle activation that is 

induced by non-physiological had a crucial demarcation 

which was the decrease of contraction and tendency to 

have muscle fatigue. By using functional electrical 

stimulator, the muscle fatigue could be reduced and 

improve the output by tailoring the parameters of the 

stimulation. It is important for patient safety and the 

success of the treatment to determine the stimulation 

settings. Several parameters hat should be taken into 

account are the frequency, duty cycle, ramp time, pulse 

width, pulse pattern, intensity, and the desired muscle 

group [34]. 

   Another study of FES showed that the skin resistance 

on the acupuncture point could be higher or lower 

compared to the surrounding area. The acupuncture 

point might be have a specific temporary electrical 

properties.  Kramer et al (2009) study mentioned that 

most of the acupuncture point did not show a change in 

electrical skin resistance [49]. 

 

4 Conclusion 

   FES system design which has been made can generate 

the monophasic spike-exponential waveform with the 

frequency between 5-100 Hz which has an advantage of 

narrow pulse width (t1/2 = 7µs). It can prevent muscle 

fatigue because of high VP but small VRMS, so that 

small iRMS will be generated. It makes FES system 

design safe to be used because in the highest frequency 

(100 Hz) and VP (400 Volt), iRMS is generated by the 

value of 0.6 mA or under the medical safety standard. 

Besides that, FES system is applied by output voltage 

controller of stages arrangement. Thus every VRMS 

stages on each frequency can be measured, so the iRMS 

value flown to the body can be easily predicted. 

Moreover, this system has good output voltage stability, 

so this FES can be applied clinically as a medical 

rehabilitation tool due to its effective, safe, and 

comfortable application. 
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